Способ 2: Для каждого из трех городов существует 2
варианта маршрута по оставшимся городам. Если 3 умножить на 2, получится 6. Такой же ответ получится при помощи дерева вариантов.
Про второй способ рассуждений обычно говорят так: мы использовали правило умножения.
Комбинаторные задачи бывают самых разных видов. Но большинство из них решается с помощью двух основных правил – правила суммы и правила произведения. Продолжим знакомиться с правилом произведения (умножения), сформулируем утверждение: Если первую компоненту пары можно выбрать n способами , а вторую можно выбрать k способами , то число всевозможных комбинаций пар равно произведению чисел n и k.
Задача 3:
Саша, Петя, Денис, Оля, Настя часто ходят в кафе. Каждый раз, обедая там, они рассаживаются по-разному. Сколько дней друзья смогут это сделать без повторения?
Решение: Пронумеруем стулья, на которых должен сесть каждый, и будем считать, что они рассаживаются поочередно:
№1 - Саша - есть возможность выбрать из 5 вариантов (стульев)№2 - Петя - 4 варианта№3- Денис - 3 варианта№4- Оля - 2 варианта№5 - Настя- 1 вариант
Используя правило умножения, получаем: 5х4х3х2х1=120
Теперь решим задачу, применяя правило сложения.
Задача 4:
В коробке 6 синих карандашей и 12 красных. Сколько всего карандашей в коробке?
Решение: Мы легко можем ответить на вопрос, сложив число синих и красных карандашей, 6+12=18.
Изменим вопрос к задаче: сколькими способами можно выбрать из коробки один карандаш? Получим комбинаторную задачу. Число способов выбора одного карандаша равно числу всех карандашей в коробке, т.е. 18. Но 18 – это сумма 6 и 12, где 6 – число способов выбора синего карандаша, а 12 – число выбора красного карандаша. Т.о. правило суммы
можно сформулировать следующим образом.
Если объект а можно выбрать n способами, а объект b можно выбрать k способами, то выбор a или b можно сделать n+k способами.
Принцип Дирихле.
В несерьёзной форме принцип Дирихле гласит: «Нельзя посадить 7 кроликов в 3 клетки, чтобы в каждой было не больше 2 кроликов.»
Более общая формулировка: «Если z зайцев сидят в k клетках, то найдётся клетка, в которой не менее z/k зайцев.» Не надо бояться дробного числа f зайцев: если получается, что в ящике не меньше 7/3 зайцев, значит, их больше двух.
Доказательство принципа Дирихле очень простое, но заслуживает внимания, поскольку похожие рассуждения«от противного» часто встречаются. Допустим, что в каждой клетке число зайцев меньше, чем z/k. Тогда в k клетках зайцев меньше, чем
k · z/k = z. Противоречие!
Решение задачи с помощью принципа Дирихле сводится к выбору «кроликов» и «клеток». Иногда не совсем очевидно, кто в данной задаче является «кроликом», и что служит «клеткой».
1).
В классе 30 человек. В диктанте Стас Иванов сделал 13 ошибок, а остальные - меньше. Докажите, что по крайней мере три ученика сделали ошибок поровну (может быть, по 9 ошибок).
Решение: Это доказывается с помощью принципа Дирихле. Подумайте, кто здесь зайцы, и где клетки. (Здесь "зайцы" - ученики, а "клетки" - число сделанных ошибок). В клетку 0 "посадим" всех, кто не сделал ни одной ошибки, в клетку 1 - тех, у кого одна ошибка, в клетку 2 - две, . и так до клетки 13, куда попал один Стас Иванов.
Новое в образовании:
Учебная деятельность как ведущий вид деятельности детей младшего школьного
возраста
По мнению А.Н. Леонтьева ведущей называется такая деятельность ребенка, которая характеризуется тремя продуктами. Во-первых, это такая деятельность, в форме которой возникают и внутри которой дифференцируются новые виды деятельности. Во-вторых, это такая деятельность, в которой формируются или пере ...
Исследование досуговых предпочтений детей г. Волгограда
Цель нашего исследования – выявить досуговые предпочтения учащихся школ г. Волгограда и проанализировать результаты проведённого нами социологического обследования. Анкетным опросом было охвачено 700 детей и 300 родителей г. Волгограда. В бюджете времени учащихся обычно выделяют учебное и внеучебно ...
Способ демонстрации результата проделанной работы
Презентация результатов работы перед педагогическим коллективом, на заседаниях школьного МО учителей физической культуры, ОБЖ, технологии, искусства, на заседаниях городского МО учителей физической культуры. Форма отчета по проделанной работе Обобщение опыта работы на уровне школы и ГМО Выступления ...