Теперь применим принцип Дирихле,докажем утверждение задачи от противного. Предположим, никакие три ученика не сделали по одинаковому числу ошибок, то есть в каждую из клеток 0, 1, ., 12 попало меньше трех школьников. Тогда в каждой из них два человека или меньше, а всего в этих 13 клетках не больше 26 человек. Добавив Стаса Иванова, все равно не наберем 30 ребят. Противоречие. Можно ли утверждать, что ровно трое сделали поровну ошибок? Нет, конечно. Возможно, что все ребята, кроме Стаса, написали диктант без единой ошибки, то есть, все сделали по 0 ошибок. Можно ли считать, что по крайней мере четверо попали в одну "клетку" ? Нет, нельзя. Класс, в котором по 3 человека сделали 0, 1, 2 ошибки, по 2 человека - 3, 4, ., 12 ошибок и один - 13, удовлетворяет условию задачи.
2).
В одном доме живут 13 учеников одной и той же школы. В этой школе 12 классов. Докажите, что хотя бы два ученика, живущие в этом доме, учатся в одном и том же классе
Решение. В данной задаче классы – это клетки, а учащиеся – кролики. У нас имеется 13 «кроликов» и 12 «клеток». Учитывая принцип Дирихле, мы получаем, что хотя бы в одной клетке «кроликов» два. То есть, если в школе 12 классов, то максимум в них может учиться 12 учеников. А 13 ученик все равно будет учиться в одном из этих 12 классов.
Задачи для самостоятельного решения:
1).
В магазине «Все для чая» есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?2).
Сколько существует 6-значных чисел, все цифры которых имеют одинаковую четность?3).
У Васи на куртке 3 кармана. Каким числом способов он может положить в эти карманы две одинаковые монетки?
4).
В корзине сидят котята — 2 черных, 2 рыжих и 1 полосатый. Сколькими способами можно выбрать трех котят так, чтобы они все были разной окраски?
5).
В корзине лежат яблоки двух сортов. Наугад берут из этой корзины несколько яблок. Какое наименьшее число яблок нужно взять, чтобы среди них оказались хотя бы два яблока одного сорта?
6).
Докажите, что любое число рублей можно уплатить, если покупатель и кассир имеют лишь трехрублевые и пятирублевые денежные знаки.
Новое в образовании:
Методика изложения теории вероятностей в школе
Различают традиционные и современные методы обучения. Традиционные методы направлены на обучение готовым знаниям, и учебная деятельность учащихся носит репродуктивный характер, и не способствует эффективному развитию. Внешне традиционный метод проявляется в хорошо известной форме, когда учитель изл ...
Физическая культура в структуре профессионального образования
педагогический физкультурный спортивный профессиональный Физическая культура - основа социально-культурного бытия индивида, основополагающая модификация его общей и профессиональной культуры. Как интегрированный результат воспитания и профессиональной подготовки она проявляется в отношении человека ...
Социальная природа игры
Понять природу игры, определить ее характерные черты, проанализировать причины возникновения стремились, начиная с ХIХ века многие отечественные и зарубежные исследователи. Первые попытки разработать теорию игры были предприняты К. Гроссом, Г. Сперсером, К. Бюлером, Ф. Бойтендайком и др. Несмотря н ...