Методические элементы введения комбинаторики

Страница 2

Рисунок 6

Известно, что составлением магических квадратов увлекались в Древнем Китае несколько тысяч лет назад.

Магического квадрата размером 2 x 2 не существует. Существует единственный магический квадрат размером 3 x 3, внешне отличные от него варианты можно получить либо зеркальным отображением чисел относительно осей симметрии рассмотренного квадрата (их у квадрата 4, см. рис.7), либо поворотом на 900 вокруг центра квадрата (рис.8).

Рисунок 7 Рисунок 8

Пример 5. Составьте магический квадрат, полученный из квадрата, изображенного на рис.6:

зеркальным отображением клеток от горизонтальной оси симметрии квадрата;

поворотом клеток квадрата на 900 вокруг его центра против часовой стрелки.

С увеличением количества клеток, на которые разбит квадрат, увеличивается число возможных магических квадратов.

Например, число всевозможных магических квадратов размером 4 x 4 (с записью в его клетках чисел от 1 до 16 по оговоренным правилам) уже 880, а число магических квадратов размером 5 x 5 более 200 000.

Пример магического квадрата размером 4 x 4 приведен на рис.9.

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

Рисунок 9

Латинские квадраты

Латинскими называют квадраты размером n x n клеток, в которых записаны натуральные числа от 1 до n, причем таким образом, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.10 приведен пример латинского квадрата размером 3 x 3.

1

2

3

2

3

1

3

1

2

Рисунок 10

На рис.11, а изображены два латинских квадрата размером 4 x 4, которые имеют такую особенность: если один квадрат наложить на другой (например, второй квадрат считать сделанным из прозрачной бумаги и положить его на первый), то все пары образовавшихся двухзначных чисел (рис.11, б), будут различными. Такие пары латинских квадратов называют ортогональными.

1

2

3

4

2

1

4

3

3

4

1

2

4

3

2

1

Страницы: 1 2 3 4 5 6 7


Новое в образовании:

Анализ результатов исследования
Было проведено 3 урока в 1 “а” классе по изобразительному искусству с применение ЭВМ. Делая заключение из этих уроков можно сказать, что применение ЭВМ очень эффективно помогает в развитии познавательного процесса младших школьников. Все дети работали очень увлеченно, дисциплина на уроке была отлич ...

Задачи дидактики на современном этапе
Существуют большие потенциальные "возможности развития и воспитания учащихся, совершенствования учебно-воспитательного процесса. Одна из важнейших проблем теории обучения состоит в том, чтобы раскрыть пути и методы реализации этих возможностей. Воспитывающее влияние обучения на формирование нр ...

Математический кружок для 5-6 классов как средство развития познавательного интереса
Внеклассная работа по математике является неотъемлемой частью учебно-воспитательного процесса в школе. Она способствует углублению знаний учащихся, развитию логического мышления, расширяет кругозор. Кружок также имеет сильное воспитательное значение, так как его целью является не только освещение к ...

Меню сайта

Copyright © 2026 - All Rights Reserved - www.powereducator.ru