Предлагаемый материал рекомендуется изучать в конце VII класса, исходя из тех соображений, что к этому времени у школьников еще свежи арифметические знания, сохранилась память о предметных действиях, но уже стало очевидным влияние алгебраических и геометрических знаний, т.е. наблюдается стремление к обобщению, алгоритмизации полученной информации, повышается графическая культура. Материал для этого раздела взят из журнала ”Математик в школе".
Основная цель изучения комбинаторики в старшей школе и в вузе - это получение средств решения вероятностных задач. В основной же школе комбинаторика призвана, в основном, сформировать так называемое комбинаторное мышление, позволяющее человеку разумно организовать перебор ограниченного числа данных, подсчитать всевозможные комбинации элементов, составленных по определенному правилу.
В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать количество всевозможных комбинаций элементов, образованных по определенному правилу. Такие задачи называются комбинаторными, а раздел математики, занимающийся решением этих задач, называется комбинаторикой.
Некоторые комбинаторные задачи еще в Древнем Китае, а позднее - в Римской империи. Однако как самостоятельный раздел математики комбинаторика оформилась в Европе лишь в XVIII в. в связи с развитием теории вероятностей.
В древности для облегчения вычислений часто использовали камешки. При этом особое внимание уделялось числу камешков, которые можно было разложить в виде правильной фигуры. Так появились квадратные числа (1, 4, 16, 25, …). На рис.1 показано правило их изображения.
Рисунок 1
Любое n-е по порядку квадратное число вычисляется по формуле
N=n2 (2.2)
Были сконструированы треугольные (1, 3, 6, 10, 15, …) и пятиугольные (1, 5, 12, 22, …) числа.
На рис.2 и 3 показан способ образования этих чисел.
Любое n-e по порядку треугольное число можно найти по формуле
(2.3),
а любое n-e по порядку пятиугольное - по формуле
(2.4).
Рисунок 2
Рисунок 3
Все остальные числа древние математики представляли в виде прямоугольника размером m x n, выложенных из камней, где обязательно m1 и n1 (на рис.6 изображены всевозможные представления составного числа 12). Простые числа представляли в виде линий 1x n (рис.5). В связи с этим составные числа древние ученые называли прямоугольными, а простые - непрямоугольными числами.
Рисунок 4
Рисунок 5
Пример 4. Найти седьмое по порядку:
1) квадратное число;
2) треугольное число;
3) пятиугольное число.
Решение:
1) по формуле N=n2 при n=7 находим N=72=49.
по формуле при n=7 находим .
по формуле при n=7 находим .
Магические квадраты
Поместим натуральные числа от 1 до 9 в клетках квадрата размером 3 x 3 таким образом, чтобы все суммы чисел по горизонтали и по вертикали, а также по диагоналям были равны 15 (рис.6). Полученный квадрат, а также другие квадраты с теми же свойствами называют магическими квадратами.
6 |
1 |
8 |
7 |
5 |
3 |
2 |
9 |
4 |
Новое в образовании:
Анализ работы детского хорового коллектива «Мелодия» г. Волгограда
по реализации творческой активности детей
Хоровой коллектив «Мелодия» ГОУ Центра образования №118 создано в 2002 году. В коллективе занимается 100 человек в возрасте от 5 до 14 лет. Дети обучаются по комплексной образовательной программе хорового коллектива, рассчитанной на 4 года. Учащиеся хорового коллектива «Мелодия» ГОУ Центра образова ...
Принцип воспитания в коллективе
Суть требований этого принципа вытекает из положения, что человек как существо общественное получает необходимые условия для всестороннего развития своих задатков только в коллективе. Под коллективом понимается устойчивая группа людей, сплоченных единой общественно полезной цепью и общей деятельнос ...
Рекомендации для родителей по использованию сказки в нравственном
воспитании ребёнка
Родители, которые серьезно относятся к воспитанию детей, естественно, стараются им больше читать, понимая, что художественная литература оказывает на душу ребенка огромное влияние. Но не все задумываются над тем, что далеко не любое влияние бывает положительным. Книга может подействовать на человек ...